Chapter 15 References

Abberton, M.T., Conant, R.T. & Batello, C. 2010. Grassland carbon sequestration: Management, policy and economics : proceedings of the Workshop on the role of grassland carbon sequestration in the mitigation of climate change. Integrated crop management, 1020-4555. Rome, Food; Agriculture Organization of the United Nations, Plant Production; Protection Division; Food; Agriculture Organization of the United Nations.
Al-Adamat, R., Rawajfih, Z., Easter, M., Paustian, K., Coleman, K., Milne, E., Falloon, P., Powlson, D.S. & BATJES, N.H. 2007. Predicted soil organic carbon stocks and changes in Jordan between 2000 and 2030 made using the GEFSOC Modelling System. Agriculture, Ecosystems & Environment, 122(1): 35–45. https://doi.org/10.1016/j.agee.2007.01.006
Allen, M.R. & Stocker, T.F. 2014. Impact of delay in reducing carbon dioxide emissions. Nature Climate Change, 4(1): 23–26. https://doi.org/10.1038/nclimate2077
Anonymous. undated. Global Soil Organic Carbon (GSOC) Map | Global Soil Partnership | Food and Agriculture Organization of the United Nations. [Cited 26 November 2020]. http://www.fao.org/global-soil-partnership/pillars-action/4-information-and-data-new/global-soil-organic-carbon-gsoc-map
Bahn, M., Kutsch, W.L. & Heinemeyer, A. 2012. Synthesis: emerging issues and challenges for an integrated understanding of soil carbon fluxes. In W.L. Kutsch, ed. Soil carbon dynamics, pp. 257–271. Cambridge, Cambridge University Press.
Batjes, N.H. 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2): 151–163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
Beek, J. & Frissel, M.J. 1973. Simulation of nitrogen behaviour in soils. Simulation monographs. Wageningen, Pudoc. (also available at http://eprints.icrisat.ac.in/13135/).
Bolinder, M.A., Janzen, H.H., Gregorich, E.G., Angers, D.A. & VandenBygaart, A.J. 2007. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agriculture, Ecosystems & Environment, 118(1-4): 29–42. https://doi.org/10.1016/j.agee.2006.05.013
Campbell, E.E. & Paustian, K. 2015. Current developments in soil organic matter modeling and the expansion of model applications: a review. Environmental Research Letters, 10(12): 123004. https://doi.org/10.1088/1748-9326/10/12/123004
Clarholm, M. & Bergström, L., eds. 1989. Ecology of Arable Land – Perspectives and Challenges: Proceeding of an International Symposium, 9-12 June 1987 Swedish University of Agricultural Sciences, Uppsala, Sweden. Developments in plant and soil sciences. Dordrecht, Springer Netherlands.
Coleman, K. & Jenkinson, D.S. 1996. RothC-26.3 - A Model for the turnover of carbon in soil. In D.S. Powlson, P. Smith & J.U. Smith, eds. Evaluation of soil organic matter models. pp. 237–246. NATO ASI series. Series i, global environmental change. Paper presented at, 1996, Berlin; New York.
Easter, M., Paustian, K., Killian, K., Williams, S., Feng, T., Al-Adamat, R., BATJES, N.H., Bernoux, M., Bhattacharyya, T., Cerri, C.C., Cerri, C.E.P., Coleman, K., Falloon, P., Feller, C., Gicheru, P., Kamoni, P., Milne, E., Pal, D.K., Powlson, D.S., Rawajfih, Z., Sessay, M. & Wokabi, S. 2007. The GEFSOC soil carbon modelling system: A tool for conducting regional-scale soil carbon inventories and assessing the impacts of land use change on soil carbon. Agriculture, Ecosystems & Environment, 122(1): 13–25. https://doi.org/10.1016/j.agee.2007.01.004
Eggleston, H.S., ed. 2006. 2006 IPCC guidelines for national greenhouse gas inventories. Hayama, Japan, Institute for Global Environmental Strategies.
Falloon, P.D., Smith, P., Smith, J.U., Szabó, J., Coleman, K. & Marshall, S. 1998. Regional estimates of carbon sequestration potential: linking the Rothamsted Carbon Model to GIS databases. Biology and Fertility of Soils, 27(3): 236–241. https://doi.org/10.1007/s003740050426
Falloon, P., Jones, C.D., Cerri, C.E., Al-Adamat, R., Kamoni, P., Bhattacharyya, T., Easter, M., Paustian, K., Killian, K., Coleman, K. & Milne, E. 2007. Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agriculture, Ecosystems & Environment, 122(1): 114–124. https://doi.org/10.1016/j.agee.2007.01.013
Falloon, P. & Smith, P. 2003. Accounting for changes in soil carbon under the Kyoto Protocol: need for improved long-term data sets to reduce uncertainty in model projections. Soil Use and Management, 19(3): 265–269. https://doi.org/10.1111/j.1475-2743.2003.tb00313.x
Farina, R., Coleman, K. & Whitmore, A.P. 2013. Modification of the RothC model for simulations of soil organic C dynamics in dryland regions. Geoderma, 200-201: 18–30. https://doi.org/10.1016/j.geoderma.2013.01.021
Farina, R., Marchetti, A., Francaviglia, R., Napoli, R. & Di Bene, C. 2017. Modeling regional soil C stocks and CO2 emissions under Mediterranean cropping systems and soil types. Agriculture, Ecosystems & Environment, 238: 128–141. https://doi.org/10.1016/j.agee.2016.08.015
Follett, R.F., Kimble, J.M., Pruessner, E.G., Samson-Liebig, S. & Waltman, S. 2009. Soil Organic Carbon Stocks with Depth and Land Use at Various U.S. Sites. In R. Lal & R.F. Follett, eds. Soil carbon sequestration and the greenhouse effect, pp. 29–46. SSSA special publication. Madison, WI, Soil Science Society of America, Inc.
Food and Agriculture Organization of the United Nations. 2017. Voluntary Guidelines for Sustainable Soil Management. Rome, FAO. http://www.fao.org/documents/card/en/c/5544358d-f11f-4e9f-90ef-a37c3bf52db7/
Franko, U. 1996. Modelling approaches of soil organic matter turnover within the CANDY system. In D.S. Powlson, P. Smith & J.U. Smith, eds. Evaluation of soil organic matter models. pp. 247–254. NATO ASI series. Series i, global environmental change. Paper presented at, 1996, Berlin; New York.
Gilhespy, S.L., Anthony, S., Cardenas, L., Chadwick, D., Prado, A. del, Li, C., Misselbrook, T., Rees, R.M., Salas, W., Sanz-Cobena, A., Smith, P., Tilston, E.L., Topp, C.F.E., Vetter, S. & Yeluripati, J.B. 2014. First 20 years of DNDC (DeNitrification DeComposition): Model evolution. Ecological Modelling, 292: 51–62. https://doi.org/10.1016/j.ecolmodel.2014.09.004
Gottschalk, P., Smith, J.U., Wattenbach, M., Bellarby, J., Stehfest, E., Arnell, N., Osborn, T.J., Jones, C. & Smith, P. 2012. How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios. Biogeosciences, 9(8): 3151–3171. https://doi.org/10.5194/bg-9-3151-2012
Grace, P., Ladd, J., Robertson, G. & Gage, S. 2006. SOCRATES - A simple model for predicting long-term changes in soil organic carbon in terrestrial ecosystems. Soil Biology and Biochemistry, 38(5): 1172–1176. https://doi.org/10.1016/j.soilbio.2005.09.013
Hadas, A., Parkin, T.B. & Stahl, P.D. 1998. Reduced CO 2 release from decomposing wheat straw under N-limiting conditions: simulation of carbon turnover. European Journal of Soil Science, 49(3): 487–494. https://doi.org/10.1046/j.1365-2389.1998.4930487.x
Hansen, S., Jensen, H.E., Nielsen, N.E. & Svendsen, H. 1991. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Fertilizer research, 27(2-3): 245–259. https://doi.org/10.1007/BF01051131
Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B., Guevara, M.A., Vargas, R., MacMillan, R.A., Batjes, N.H., Leenaars, J.G.B., Ribeiro, E., Wheeler, I., Mantel, S. & Kempen, B. 2017. SoilGrids250m: Global gridded soil information based on machine learning. PloS one, 12(2): e0169748. https://doi.org/10.1371/journal.pone.0169748
IPCC. 2019. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
Jansson, C., Wullschleger, S.D., Kalluri, U.C. & Tuskan, G.A. 2010. Phytosequestration: Carbon Biosequestration by Plants and the Prospects of Genetic Engineering. BioScience, 60(9): 685–696. https://doi.org/10.1525/bio.2010.60.9.6
Jenkinson, D.S., Adams, D.E. & Wild, A. 1991. Model estimates of CO2 emissions from soil in response to global warming. Nature, 351(6324): 304–306. https://doi.org/10.1038/351304a0
Jenkinson, D.S. & Coleman, K. 2008. The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover. European Journal of Soil Science, 59(2): 400–413. https://doi.org/10.1111/j.1365-2389.2008.01026.x
Jenkinson, D.S. & Rayner, J.H. 1977. The Turnover of Soil Organic Matter in Some of The Rothamsted Classical Experiments. Soil Science, 123(5): 298–305. https://doi.org/10.1097/00010694-197705000-00005
Jenny, H. 1994. Factors of soil formation: A system of quantitative pedology. New York, Dover.
Jenny, H., Gessel, S.P. & Bingham, F.T. 1949. Comparative Study of Decomposition Rates of Organic Matter in Temperate and Tropical Regions. Soil Science, 68(6): 419–432. https://doi.org/10.1097/00010694-194912000-00001
Jo Smith, P.S., Jeannette Meyer, M.W., Sönke Zaehle, M.L., Robert J.A. Jones, R.H., Mark Rounsevell, L.M., REGINSTER, I. & Kankaanpää, S. 2006. Projected changes in mineral soil carbon of European forests, 1990–2100. Canadian Journal of Soil Science, 86(Special Issue): 159–169. https://doi.org/10.4141/S05-078
Keenan, T.F., Carbone, M.S., Reichstein, M. & Richardson, A.D. 2011. The model-data fusion pitfall: assuming certainty in an uncertain world. Oecologia, 167(3): 587–597. https://doi.org/10.1007/s00442-011-2106-x
Kutsch, W., Bahn, M. & Heinemeyer, A. 2016. Soil carbon dynamics: An integrated methodology / edited by Werner L. Kutsch (Johann Heinrich von Thünen Institut, Braunschweig), Michael Bahn (Leopold-Franzens Universität Innsbruck), Andreas Heinemeyer (Stockholm Environment Institute, University of York). Reprinted with corrections edition. Cambridge, Cambridge University Press.
Kutsch, W.L., ed. 2012. Soil carbon dynamics: An integrated methodology. Repr. with edition. Cambridge, Cambridge University Press.
Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science (New York, N.Y.), 304(5677): 1623–1627. https://doi.org/10.1126/science.1097396
Lal, R. & Follett, R.F., eds. 2009. Soil carbon sequestration and the greenhouse effect. Second edi edition. SSSA special publication. Madison, WI, Soil Science Society of America, Inc.
Lal, R., Smith, P., Jungkunst, H.F., Mitsch, W.J., Lehmann, J., Nair, P.RamachandranK., McBratney, A.B., de Moraes Sá, J.C., Schneider, J., Zinn, Y.L., Skorupa, A.L.A., Zhang, H.-L., Minasny, B., Srinivasrao, C. & Ravindranath, N.H. 2018. The carbon sequestration potential of terrestrial ecosystems. Journal of Soil and Water Conservation, 73(6): 145A—–152A. https://doi.org/10.2489/jswc.73.6.145A
Lauenroth, W.K., Skogerboe, G.V. & Flug, M., eds. 1983. Analysis of ecological systems: State-of-the-art in ecological modelling / edited by William K. Lauenroth, Gaylord V. Skogerboe, Marshall Flug ; proceedings of a symposium held from 24 to 28 May 1982 at Colorado State University, Fort Collins, Colorado, U.S.A. ; sponsored by the International Society for Ecological Modelling (ISEM) ; hosted by the Natural Resource Ecology Laboratory, Colorado State University. Developments in environmental modelling. Armstrong; Oxford, Elsevier Scientific.
Lehtonen, A., \backslashvTupek, B., Nieminen, T.M., Balázs, A., Anjulo, A., Teshome, M., Tiruneh, Y. & Alm, J. 2020. Soil carbon stocks in Ethiopian forests and estimations of their future development under different forest use scenarios. Land Degradation & Development. https://doi.org/10.1002/ldr.3647
Li, C. 1996. The DNDC Model. In D.S. Powlson, P. Smith & J.U. Smith, eds. Evaluation of soil organic matter models. pp. 263–267. NATO ASI series. Series i, global environmental change. Paper presented at, 1996, Berlin; New York.
Lieth, H. 1975. Modeling the Primary Productivity of the World. In H. Lieth & R.H. Whittaker, eds. Primary productivity of the biosphere, pp. 237–263. Ecological studies, analysis and synthesis, 0070-8356. Berlin, Heidelberg, Springer Berlin Heidelberg.
Lieth, H. & Whittaker, R.H., eds. 1975. Primary Productivity of the Biosphere. Ecological studies, analysis and synthesis, 0070-8356. Berlin, Heidelberg, Springer Berlin Heidelberg.
Lorenz, K. & Lal, R. 2018. Carbon sequestration in agricultural ecosystems. Cham, Switzerland, Springer.
Lugato, E., Bampa, F., Panagos, P., Montanarella, L. & Jones, A. 2014. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Global change biology, 20(11): 3557–3567. https://doi.org/10.1111/gcb.12551
Manzoni, S. & Porporato, A. 2009. Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biology and Biochemistry, 41(7): 1355–1379. https://doi.org/10.1016/j.soilbio.2009.02.031
Martens, R. 1995. Current methods for measuring microbial biomass C in soil: Potentials and limitations. Biology and Fertility of Soils, 19(2-3): 87–99. https://doi.org/10.1007/BF00336142
Milne, E., Adamat, R.A., BATJES, N.H., Bernoux, M., Bhattacharyya, T., Cerri, C.C., Cerri, C.E.P., Coleman, K., Easter, M., Falloon, P., Feller, C., Gicheru, P., Kamoni, P., Killian, K., Pal, D.K., Paustian, K., Powlson, D.S., Rawajfih, Z., Sessay, M., Williams, S. & Wokabi, S. 2007. National and sub-national assessments of soil organic carbon stocks and changes: The GEFSOC modelling system. Agriculture, Ecosystems & Environment, 122(1): 3–12. https://doi.org/10.1016/j.agee.2007.01.002
Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B.S., Field, D.J., Gimona, A., Hedley, C.B., Hong, S.Y., Mandal, B., Marchant, B.P., Martin, M., McConkey, B.G., Mulder, V.L., O’Rourke, S., Richer-de-Forges, A.C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G., Wesemael, B. van & Winowiecki, L. 2017. Soil carbon 4 per mille. Geoderma, 292: 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002
Mondini, C., Coleman, K. & Whitmore, A.P. 2012. Spatially explicit modelling of changes in soil organic C in agricultural soils in Italy, 2001–2100: Potential for compost amendment. Agriculture, Ecosystems & Environment, 153: 24–32. https://doi.org/10.1016/j.agee.2012.02.020
Moradizadeh, M. & Saradjian, M.R. 2016. Vegetation Effects Modeling in Soil Moisture Retrieval Using MSVI. Photogrammetric Engineering & Remote Sensing, 82(10): 803–810. https://doi.org/10.14358/PERS.82.10.803
Morais, T.G., Teixeira, R.F.M. & Domingos, T. 2019. Detailed global modelling of soil organic carbon in cropland, grassland and forest soils. PloS one, 14(9): e0222604. https://doi.org/10.1371/journal.pone.0222604
Motavalli, P.P., Palm, C.A., Parton, W.J., Elliott, E.T. & Frey, S.D. 1995. Soil pH and organic C dynamics in tropical forest soils: Evidence from laboratory and simulation studies. Soil Biology and Biochemistry, 27(12): 1589–1599. https://doi.org/10.1016/0038-0717(95)00082-P
Neumann, M. & Smith, P. 2018. Carbon uptake by European agricultural land is variable, and in many regions could be increased: Evidence from remote sensing, yield statistics and models of potential productivity. The Science of the total environment, 643: 902–911. https://doi.org/10.1016/j.scitotenv.2018.06.268
Palosuo, T., Foereid, B., Svensson, M., Shurpali, N., Lehtonen, A., Herbst, M., Linkosalo, T., Ortiz, C., Rampazzo Todorovic, G., Marcinkonis, S., Li, C. & Jandl, R. 2012. A multi-model comparison of soil carbon assessment of a coniferous forest stand. Environmental Modelling & Software, 35: 38–49. https://doi.org/10.1016/j.envsoft.2012.02.004
Parshotam, A. & Hewitt, A.E. 1995. Application of the Rothamsted carbon turnover model to soils in degraded semi-arid land in New Zealand. Environment International, 21(5): 693–697. https://doi.org/10.1016/0160-4120(95)00071-R
Parton, W.J. 1996. The CENTURY model. In D.S. Powlson, P. Smith & J.U. Smith, eds. Evaluation of soil organic matter models. pp. 283–291. NATO ASI series. Series i, global environmental change. Paper presented at, 1996, Berlin; New York.
Parton, W.J., Cole, C.V., Stewart, J.W.B., Ojima, D.S. & Schimel, D.S. 1989. Simulating regional patterns of soil C, N, and P dynamics in the U.S. central grasslands region. In M. Clarholm & L. Bergström, eds. Ecology of arable land – perspectives and challenges, pp. 99–108. Developments in plant and soil sciences. Dordrecht, Springer Netherlands.
Paustian, K., Collier, S., Baldock, J., Burgess, R., Creque, J., DeLonge, M., Dungait, J., Ellert, B., Frank, S., Goddard, T., Govaerts, B., Grundy, M., Henning, M., Izaurralde, R.C., Madaras, M., McConkey, B., Porzig, E., Rice, C., Searle, R., Seavy, N., Skalsky, R., Mulhern, W. & Jahn, M. 2019. Quantifying carbon for agricultural soil management: from the current status toward a global soil information system. Carbon Management, 10(6): 567–587. https://doi.org/10.1080/17583004.2019.1633231
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G.P. & Smith, P. 2016. Climate-smart soils. Nature, 532(7597): 49–57. https://doi.org/10.1038/nature17174
Petri, M., Batello, C., Villani, R. & Nachtergaele, F. 2009. Carbon status and carbon sequestration potential in the world’s grasslands. FAO.
Plutzar, C., Kroisleitner, C., Haberl, H., Fetzel, T., Bulgheroni, C., Beringer, T., Hostert, P., Kastner, T., Kuemmerle, T., Lauk, C., Levers, C., Lindner, M., Moser, D., Müller, D., Niedertscheider, M., Paracchini, M.L., Schaphoff, S., Verburg, P.H., Verkerk, P.J. & Erb, K.-H. 2016. Changes in the spatial patterns of human appropriation of net primary production (HANPP) in Europe 1990–2006. Regional Environmental Change, 16(5): 1225–1238. https://doi.org/10.1007/s10113-015-0820-3
Poeplau, Christopher and Don, Axel. 2012. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma, 192: 189–201. https://doi.org/10.1016/j.geoderma.2012.08.003
Poulton, P., Johnston, J., Macdonald, A., White, R. & Powlson, D. 2018. Major limitations to achieving "4 per 1000" increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom. Global change biology, 24(6): 2563–2584. https://doi.org/10.1111/gcb.14066
Powlson, D.S., Smith, P. & Smith, J.U., eds. 1996. Evaluation of soil organic matter models: Using existing long-term datasets. NATO ASI series. Series i, global environmental change. Berlin; New York, NATO Advanced Research Workshop {\(\backslash\)textquotedbl}Evaluation of Soil Organic Matter Models Using Existing Long-term Datasets{\(\backslash\)textquotedbl}; Springer.
Richter, J. 1981. Simulation of nitrogen behaviour of soil-plant systems, Papers of a workshop Models for the behaviour of nitrogen in soil and uptake by plant. Zeitschrift für Pflanzenernährung und Bodenkunde, 144(4): 428–429. https://doi.org/10.1002/jpln.19811440414
Riggers, C., Poeplau, C., Don, A., Bamminger, C., Höper, H. & Dechow, R. 2019. Multi-model ensemble improved the prediction of trends in soil organic carbon stocks in German croplands. Geoderma, 345: 17–30. https://doi.org/10.1016/j.geoderma.2019.03.014
S., J.D. 1990. The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 329(1255): 361–368. https://doi.org/10.1098/rstb.1990.0177
Saggar, S., Parshotam, A., Sparling, G.P., Feltham, C.W. & Hart, P.B.S. 1996. 14C-labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy. Soil Biology and Biochemistry, 28(12): 1677–1686. https://doi.org/10.1016/S0038-0717(96)00250-7
Scharlemann, J.P.W., Tanner, E.V.J., Hiederer, R. & Kapos, V. 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, 5(1): 81–91. https://doi.org/10.4155/cmt.13.77
Schmer, M.R., Jin, V.L., Wienhold, B.J., Varvel, G.E. & Follett, R.F. 2014. Tillage and Residue Management Effects on Soil Carbon and Nitrogen Under Irrigated Continuous Corn. Soil Science Society of America Journal, 78(6): 1987–1996. https://doi.org/10.2136/sssaj2014.04.0166
Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S. & Trumbore, S.E. 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478(7367): 49–56. https://doi.org/10.1038/nature10386
Schulze, E.D., Ciais, P., Luyssaert, S., Schrumpf, M., Janssens, I.A., Thiruchittampalam, B., Theloke, J., Saurat, M., Bringezu, S., Lelieveld, J., Lohila, A., Rebmann, C., Jung, M., Bastviken, D., Abril, G., Grassi, G., Leip, A., Freibauer, A., Kutsch, W., Don, A., Nieschulze, J., Börner, A., Gash, J.H. & Dolman, A.J. 2010. The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes. Global change biology, 16(5): 1451–1469. https://doi.org/10.1111/j.1365-2486.2010.02215.x
Shang, C. & Tiessen, H. 1998. Organic Matter Stabilization in Two Semiarid Tropical Soils: Size, Density, and Magnetic Separations. Soil Science Society of America Journal, 62(5): 1247–1257. https://doi.org/10.2136/sssaj1998.03615995006200050015x
Shirato, Y., Hakamata, T. & Taniyama, I. 2004. Modified rothamsted carbon model for andosols and its validation: changing humus decomposition rate constant with pyrophosphate-extractable Al. Soil Science and Plant Nutrition, 50(1): 149–158. https://doi.org/10.1080/00380768.2004.10408463
Shirato, Y. & Yokozawa, M. 2005. Applying the Rothamsted Carbon Model for Long-Term Experiments on Japanese Paddy Soils and Modifying It by Simple Tuning of the Decomposition Rate. Soil Science and Plant Nutrition, 51(3): 405–415. https://doi.org/10.1111/j.1747-0765.2005.tb00046.x
Sierra, C.A., Müller, M. & Trumbore, S.E. 2012. Models of soil organic matter decomposition: the SoilR package, version 1.0. Geoscientific Model Development, 5(4): 1045–1060. https://doi.org/10.5194/gmd-5-1045-2012
Sinclair, T.R. & Seligman, N.G. 1996. Crop Modeling: From Infancy to Maturity. Agronomy Journal, 88(5): 698–704. https://doi.org/10.2134/agronj1996.00021962008800050004x
Six, J., Conant, R.T., Paul, E.A. & Paustian, K. 2002. Stabilization Mechanisms of Soil Organic Matter: Implications for C-Saturation of Soils. Plant and Soil, 241(2): 155–176. https://doi.org/10.1023/A:1016125726789
Smith, J.O., Smith, P., Wattenbach, M., Zaehle, S., Hiederer, R., Jones, R.J.A., Montanarella, L., Rounsevell, M.D.A., Reginster, I. & Ewert, F. 2005. Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080. Global Change Biology, 11(12): 2141–2152. https://doi.org/10.1111/j.1365-2486.2005.001075.x
Smith, P. 2004. How long before a change in soil organic carbon can be detected? Global Change Biology, 10(11): 1878–1883. https://doi.org/10.1111/j.1365-2486.2004.00854.x
Smith, P., Andrén, O., Brussaard, L., Dangerfield, M., Ekschmitt, K., Lavelle, P. & Tate, K. 1998. Soil biota and global change at the ecosystem level: describing soil biota in mathematical models. Global Change Biology, 4(7): 773–784. https://doi.org/10.1046/j.1365-2486.1998.00193.x
Smith, P. & Falloon, P.D. 2000. Modelling refractory soil organic matter. Biology and Fertility of Soils, 30(5-6): 388–398. https://doi.org/10.1007/s003740050019
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., WATTENBACH, M. & Smith, J. 2008. Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 363(1492): 789–813. https://doi.org/10.1098/rstb.2007.2184
Smith, P., Smith, J.U., Franko, U., Kuka, K., Romanenkov, V.A., Shevtsova, L.K., Wattenbach, M., Gottschalk, P., Sirotenko, O.D., Rukhovich, D.I., Koroleva, P.V., Romanenko, I.A. & Lisovoi, N.V. 2007. Changes in mineral soil organic carbon stocks in the croplands of European Russia and the Ukraine, 1990–2070; comparison of three models and implications for climate mitigation. Regional Environmental Change, 7(2): 105–119. https://doi.org/10.1007/s10113-007-0028-2
Smith, P., Smith, J.U., Powlson, D.S., McGill, W.B., Arah, J.R.M., Chertov, O.G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D.S., Jensen, L.S., Kelly, R.H., Klein-Gunnewiek, H., Komarov, A.S., Li, C., Molina, J.A.E., Mueller, T., Parton, W.J., Thornley, J.H.M. & Whitmore, A.P. 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 81(1-2): 153–225. https://doi.org/10.1016/S0016-7061(97)00087-6
Smith, P., Soussana, J.-F., Angers, D., Schipper, L., Chenu, C., Rasse, D.P., Batjes, N.H., Egmond, F. van, McNeill, S., Kuhnert, M., Arias-Navarro, C., Olesen, J.E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro-Fuentes, J., Sanz-Cobena, A. & Klumpp, K. 2020. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology, 26(1): 219–241. https://doi.org/10.1111/gcb.14815
Tifafi, M., Guenet, B. & Hatté, C. 2018. Large Differences in Global and Regional Total Soil Carbon Stock Estimates Based on SoilGrids, HWSD, and NCSCD: Intercomparison and Evaluation Based on Field Data From USA, England, Wales, and France. Global Biogeochemical Cycles, 32(1): 42–56. https://doi.org/10.1002/2017GB005678
Vries, W. de. 2018. Soil carbon 4 per mille: a good initiative but let’s manage not only the soil but also the expectations. Geoderma, 309: 111–112. https://doi.org/10.1016/j.geoderma.2017.05.023
Weihermüller, L., Graf, A., Herbst, M. & Vereecken, H. 2013. Simple pedotransfer functions to initialize reactive carbon pools of the RothC model. European Journal of Soil Science, 64(5): 567–575. https://doi.org/10.1111/ejss.12036
Wieder, W.R., Grandy, A.S., Kallenbach, C.M. & Bonan, G.B. 2014. Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model. Biogeosciences, 11(14): 3899–3917. https://doi.org/10.5194/bg-11-3899-2014
Wiesmeier, M., Poeplau, C., Sierra, C.A., Maier, H., Frühauf, C., Hübner, R., Kühnel, A., Spörlein, P., Geuß, U., Hangen, E., Schilling, B., Lützow, M. von & Kögel-Knabner, I. 2016. Projected loss of soil organic carbon in temperate agricultural soils in the 21(st) century: effects of climate change and carbon input trends. Scientific reports, 6: 32525. https://doi.org/10.1038/srep32525
Wiesmeier, M., Schad, P., Lützow, M. von, Poeplau, C., Spörlein, P., Geuß, U., Hangen, E., Reischl, A., Schilling, B. & Kögel-Knabner, I. 2014. Quantification of functional soil organic carbon pools for major soil units and land uses in southeast Germany (Bavaria). Agriculture, Ecosystems & Environment, 185: 208–220. https://doi.org/10.1016/j.agee.2013.12.028
Williams, J.R., Dyke, P.T. & Jones, C.A. 1983. Epic - a Model for Assessing the Effects of Erosion on Soil Productivity. In W.K. Lauenroth, G.V. Skogerboe & M. Flug, eds. Analysis of ecological systems, pp. 553–572. Developments in environmental modelling. Armstrong; Oxford, Elsevier Scientific.
Yigini, Y., Olmedo, G.F., Reiter, S., Baritz, R., Viatkin, K. & Vargas, R. 2018. Soil organic carbon mapping cookbook. 2nd editio edition. Rome, FAO; FAO.